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Resonant ultrasound spectroscopy~RUS! is a method whereby the elastic tensor of a sample is
extracted from a set of measured resonance frequencies. RUS has been used successfully to
determine the elastic properties of single crystals and homogeneous samples. In this paper, we study
the application of RUS to macroscopic samples of mesoscopically inhomogeneous materials,
specifically rock. Particular attention is paid to five issues: the scale of mesoscopic inhomogeneity,
imprecision in the figure of the sample, the effects of lowQ, optimizing the data sets to extract the
elastic tensor reliably, and sensitivity to anisotropy. Using modeling and empirical testing, we find
that many of the difficulties associated with using RUS on mesoscopically inhomogeneous materials
can be mitigated through the judicious choice of sample size and sample aspect ratio. ©2002
Acoustical Society of America.@DOI: 10.1121/1.1463447#

PACS numbers: 43.35.Cg, 43.35.Yb, 43.20.Ks@SGK#
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I. INTRODUCTION AND BACKGROUND

In this paper, we explore the application of resonant
trasound spectroscopy~RUS! to macroscopic~e.g., Lmacro

50.1 cm– 10 cm! samples of rock in order to learn the ela
tic tensor. Rocks are consolidated materials, typically
sembled from aggregates of mesoscopic sized pieces~e.g.,
Lmeso510mm– 100mm! of microscopically uniform mate-
rial ~length scaleLm!. They are mesoscopically inhomog
neous, that is, inhomogeneous on a scale small compare
the sample size but large compared to the microscopic le
scale (Lmacro@Lmeso@Lm). Rocks are not easily machined
precise shapes. While the microscopic scale symmetry is
mogenized by the process of their assembly, these sam
may have macroscopic symmetry of great importance.
example, rock samples commonly have symmetry due
bedding planes or other features related to their construc
Our goal is to proscribe the conditions necessary for the s
cessful use of RUS on rock and rocklike materials. Th
conditions include constraints on sample preparation
constraints on the set of reasonable questions that ca
answered with RUS.

The success of RUS derives from the sensitivity of
normal mode frequencies of a sample to its elastic structu1

The elastic structure affecting resonance frequencies
three components: the figure of the sample; the homogen
of the sample; and the elastic tensor of the sample, includ
symmetry and orientation. Given a perfectly homogene
sample with a precise figure, the elastic tensor can be der
to a very high degree of accuracy.2

The definition of the elastic tensorCi jkl comes from an
expansion of the free energy of an elastic system to sec
order in the strain field,3

E5E01 1
2Ci jkl e i j ekl , ~1!

where
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is the i j 5 j i component of the strain tensor, andui is the i th
component of the displacement field. We use notation
which repeated indices are summed. The equation of mo
for the displacement field is

r
]2ui

]t2 5
]s i j

]xj
, ~3!

where

s i j 5
]E

]~]ui /]xj !
~4!

is the stress field.
For a finite sample, the elastic equations of motion

complemented by the requirement that the normal com
nents of internal stresses balance the external stresses
surface of the sample. That is,

s ik~x!nk~x!5Pi~x!, ~5!

where n is the normal to the surface atx, and Pi is the
normal component of the external stress applied to
sample atx.

For linear systems, the elastic tensorCi jkl relates the
stress field to the strain field,s i j 5Ci jkl ekl . Because both
stress and strain are symmetric,s i j 5s j i and e i j 5e j i , the
notation is commonly contracted such that stress and st
are six-component rank-one tensors, and the elastic tens
a 636 rank-two tensor.4 In the contracted notation,

sa5cabeb , ~6!

where x51, y52, z53, e115e1 , e225e2 , e335e3 , e23

5e4 , e315e5 , e125e6 , and similarly for the stresses. For a
isotropic sample, the symmetry of the system allows furt
1667667/8/$19.00 © 2002 Acoustical Society of America



ar

o

-

i

ro
m
.
t

n
gh
m

h

h
lo

co
so
es
te
lo
c
th
th
e
e

at

e
us
d
y
m

con-
to

from

h
duce
e in a

ech-
f a

quen-

m-
aga-
nal
ing

on
, nu-
ex-

of
and
ing
ials

in
ed
rent
to

rties
cks
ally
try
iled
the
titu-
gate
ge
by
is a

he
we
reductions of the elastic tensor until only two elements
independent,

cab5S l12m l l 0 0 0

l l12m l 0 0 0

l l l12m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

D , ~7!

or c115l12m, c125l, andc445m5(c112c12)/2. The con-
stantsl and m are called the Lame´ coefficients;c11 is the
compressional modulus, andc44 is the shear modulus~m!.
Other sets of two independent coefficients are also comm
such as the bulk modulus and shear modulus (K5l
12m/3,G5m), or Young’s modulus and Poisson’s ratio@E
5m(3l12m)/(l1m),n5l/2(l1m)#.

In terms of the Lame´ coefficients, the equation of mo
tion, Eq. ~3!, for an isotropic sample is

rüi5~l1m!
]

]xi
¹"u1m¹2ui , ~8!

and the boundary condition on the surface of the sample

l¹"uni12m
]ui

]xk
nk5Pi ; ~9!

Pi50 for a free standing sample.
Historically, the elements of the elastic tensor of mac

scopic inhomogeneous materials have been found using
chanical testing5 or ultrasonic time-of-flight measurements6

In mechanical testing the strain in response to stress,
inverse of Eq.~6!, is measured between ambient conditio
and failure in order to determine material strength and tou
ness. Components of the elastic tensor are found from
chanical testing data as the slope of stress versus strain
trapolated to low strain. For example,c115s1 /e1 , for low
strain. A mechanical test is typically quasistatic, i.e., t
stress is varied slowly~e.g., 0 MPa to 10 MPa in 1000 s!.
Mechanical tests are inherently high amplitude tests. T
great disadvantage to using such tests to determine the
strain elastic tensor is that the sample is often altered
destroyed as a result of the test. Thus results cannot be
firmed for a given sample and only part of the elastic ten
can be determined for each run. In addition, mechanical t
ing often probes the sample at strains that activate its hys
etic elastic response. Thus extrapolation of such data to
strain is not reliable.7 Our primary interest is in the elasti
tensor for low amplitude disturbances that is related to
propagation of acoustic waves. Generally, elements of
elastic tensor found from mechanical testing have low
value than elements of the elastic tensor inferred from tim
of-flight measurements. In other words, the quasist
modulus is less than the dynamic modulus.

Time-of-flight determinations of the elements of th
elastic tensor are measurements of the velocity of an aco
pulse propagating in the sample. The displacement cause
the acoustic pulse obeys Eq.~8!, but the constraints set b
Eq. ~9! at the sample surface are not met, as transducers
1668 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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be bonded to the surfaces of the sample. The boundary
dition can be ignored if the pulse width is small compared
the sample width. The transmission timet of an ultrasonic
pulse across the sample is measured. Given the distance
source to receiverL, and density of the sampler, the wave
velocities and elastic tensor can be determined. Fromv
5L/t, c115l12m5rvc

2, andc445m5rvs
2, wherevc and

vs are the compressional wave velocity~wave vector parallel
to displacement! and shear wave velocity~wave vector per-
pendicular to displacement! respectively. To determine bot
compressional and shear velocities, transducers that pro
compressional and shear waves are bonded to the sampl
variety of orientations.

Resonant ultrasound spectroscopy is an alternative t
nique for determining the elements of the elastic tensor o
sample. In RUS the frequencies ofN low-lying modes of a
free standing sample are measured. These measured fre
cies are compared toN frequencies found by solving Eq.~8!,
while satisfying the free boundary condition set by Eq.~9!
with Pi50. The modes of the sample are not simply co
pressional or shear waves, as is the case for pulse prop
tion, but are complicated entities having both compressio
and shear character. Thus in RUS the problem of solv
Eqs.~8! and~9! for the nth model resonance frequencyf n

M ,
has equal prominence with the problem of measuring thenth
experimental resonance frequencyf n

X . The elements of the
elastic tensor are found by minimizing

d f25 (
n51

N

~ f n
X2 f n

M~cab!!2 ~10!

with respect tocab .
In Sec. II, several issues pertaining to using RUS

inhomogeneous samples are discussed. In most cases
merical modeling was used to explore ways to optimize
perimental chances for success. In Sec. III, the results
RUS experiments on a variety of samples are displayed
discussed as well as a summary of our findings, describ
the bounds on RUS applicability to inhomogeneous mater
found empirically and through modeling.

II. MODELING AND EXPERIMENTAL DEVELOPMENT

In this section we will apply the methods described
Visscheret al.8 to model and analyze experiments perform
on macroscopic samples of rock. The assumptions inhe
in the analysis will be discussed, as well as ways in which
maximize the success of RUS on samples whose prope
do not superficially satisfy these assumptions. Since ro
are not single crystals, or even polycrystals, but are usu
aggregates of multiple materials with different symme
properties, we do not expect to be able to study deta
properties of specific modes of the sample, or to probe
sophisticated symmetries that may be present in the cons
ents of the samples. Our goal is to characterize the aggre
material. To this end, we will focus our attention on avera
frequency changes over multiple modes, i.e., we begin
answering the broadest questions, such as whether there
good isotropic approximation to the elastic tensor of t
rock. If we have a satisfactory answer to this question,
Ulrich et al.: Determinination of elastic moduli of rock



a
o
ha

ci
an

N

ng

-
ro
e

th
le
-

el

o-
we
of
ar
w

ow
in
s

n
el
o

r
ra

th
th
f

o
er
T

le

a
nd

e
lom
ie
p

eso-
ard
umb
to a
uch

ith

nce
nts

ity
e
hly
e-
on.
f
e

ace
n a

a-
ar-
his
nt of
ate
ed
em-
lcu-

y

20

lace-
e as
may ask whether there is a possible transverse isotropic
proximation to the elastic tensor. In this work, we do n
attempt to answer refined questions that focus on the be
ior of particular modes of a particular symmetry.

The experiment, measurement of resonance frequen
and numerical inversion is performed using hardware
software developed by Dynamic Resonance Systems~DRS!,
a commercial provider of RUS measurement systems.
merical inversion, i.e., determination ofcab from Eq.~10!, is
based on the Visscheret al.8 variational technique. The
analysis software finds model resonance frequencies usi
model of the elastic system in which it is~A! free standing,
~B! spatially homogeneous, and~C! a rectangular parallelepi
ped. Departure of the experimental system or sample f
these three conditions can introduce shifts in the experim
tally measured frequencies that will introduce errors in
derived elastic tensor. How well our system and samp
conform to~A!, ~B!, and ~C!, and estimates of the error in
duced by nonconformity are discussed below.

Rock and similar type samples, e.g., concrete, have r
tively high acoustic attenuation, or lowQ. Thus several very
practical issues arise.~D! What can we do to make the res
nance peaks distinct from one another and therefore
defined?~E! How do we acquire the most information out
the low-lying resonance peaks, the ones we can see cle
That is, how do we maximize the dependence of the lo
lying resonances on the full elastic tensor? Finally,~F! how
sensitive are we to anisotropy in the sample? We will sh
here, that by altering the sample geometry, while maintain
a rectangular parallelepiped shape, these practical issue
be addressed.

A. Free boundaries

The variational technique used to find model freque
cies, f n

M , is based on recognizing that the displacement fi
satisfying the elastic wave equation with free boundaries
the sample surface, Eq.~8! and Eq. ~9! with Pi50, also
makes the elastic Lagrangian of the sample stationary.8 To
approximate free boundaries in the experiment, the sou
and detector are most often placed at vertices of the pa
lelpiped, delicately supporting the sample. The sample
nearly free standing. Holding the sample at vertices has
further advantage of keeping the transducers away from
expected node lines of the resonant modes. When the
resonance spectrum is complicated, transducers may
placed purposely at expected nodes, such as the center
face, to temporarily simplify the spectrum. Using transduc
for support limits the sample size. Our transducers are PZ
piezoelectric pinducers. We have limited our samples to
than 100 cm3, and 250 g.

B. Homogeneity

The elastic behavior of a consolidated material is prim
rily determined by a macroscopic average over the bo
between constituents~grains in a rock!, rather than by the
elastic properties of the constituents themselves. For
ample, the elastic behavior of sandstone, a quartz cong
erate, is more a function of grain-to-grain bond propert
than of SiO2 properties. We are interested in the elastic pro
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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erties of consolidated materials, i.e., materials that are m
scopically inhomogeneous. We want to be able to reg
these materials as homogeneous. We adopt the rule of th
that an inhomogeneous material looks homogeneous
propagating wave when the wavelength of the wave is m
greater than the length scale of the inhomogeneity.

A simple calculation for a one-dimensional system w
free boundaries results in resonance wavelengthsl52l /n,
wherel is the length of the sample andn is an integer num-
ber of nodes. Assuming that we need the first ten resona
frequencies to accurately determine two elastic consta
with RUS,1 we want the maximum size of an inhomogene
j! l min/5, wherel min is the length of the smallest side of th
sample. This estimate is very conservative, since it is hig
unlikely that all of the first ten resonant modes in a thre
dimensional sample will have nodes along a single directi
We use the ratioj/ l min to characterize the inhomogeneity o
our samples, wherej is crudely determined by measuring th
diameter of the largest area of color variation on the surf
of a sample, e.g., the diameter of the largest black spot o
sample of Sierra white granite.

C. Sample geometry, the figure of the sample

Samples of consolidated materials are difficult to m
chine without chipping, and often do not have perfectly p
allel sides. How ideal must the figure of a sample be? T
question can be examined using the perturbation treatme
the elasticity problem sketched in the Appendix. To simul
the effect of an error in the figure of a sample, a localiz
mass is carried around a two-dimensional rectangular m
brane, and the frequency shift caused by this mass is ca
lated. The frequency shift for moden is given by

vn
22vn0

2

vn0
2 '2

d f n

f n
5^unu

dr

r0
uun&, ~11!

whereun andvn0 are thenth eigenmode and eigenfrequenc
of a perfectly shaped sample anddr is the localized mass
perturbation being carried around the sample~see the Appen-
dix!. In Fig. 1, the average frequency shift of the lowest

FIG. 1. Percentage frequency shift as a function of mass perturbation p
ment. The perturbation is moved through a two-dimensional rectangl
shown in the inset.
1669Ulrich et al.: Determinination of elastic moduli of rock
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resonances of the membrane,

dF5
1

20
A(

n51

20 S d f n

f n
D 2

, ~12!

is shown as a function of the perturbation placement. T
perturbation is carried along the sample edge and into
sample interior as shown in the inset in the figure. When
perturbation is at an interior point it is essentially a 1% m
distortion, when it is along the perimeter it is a 1% distorti
of the figure. Distortions in the figure of the sample are mu
more important than equivalent mass distortions in
sample interior. A 1% chip out of the corner of a sample c
produce a 1% change in the frequency. A 1% mass distor
at the sample center produces less than 0.2% change in
quency.

The test calculation was performed on a tw
dimensional membrane. In three dimensions we expect s
mass distortions to cause smaller frequency shifts than in
dimensions. Given the number of other contributors to er
in RUS measurements on consolidated materials, the co
bution due to a mass or figure distortion is rather small. T
conclusion was confirmed empirically by making RUS me
surements on samples before and after chipping, and on
ous samples of the same size.

D. Distinct resonance peaks

Consolidated materials are often found to have a l
quality factorQ, i.e., a high attenuation. At fixed amplitud
low Q materials have fewer observable resonance frequ
cies than highQ materials. Additionally the broader reso
nance peaks of lowQ materials overlap nearby peaks a
complicate peak picking. However, the geometry of a sam
sets the frequency difference between peaks. For examp
sample that is a cube of an isotropic material has a three-
degeneracy in all of its resonance frequencies. Thus we
use geometry to minimize peak overlap due to a lowQ.

In Fig. 2, calculated resonance frequencies are plo

FIG. 2. Calculated resonance frequencies as a function of aspect ratio
sample is at a constant volume of 4.8 cm3; b51.1a, and the aspect ratio is
c/a on the right side,2a/c on the left side. The elastic constants arec11

586.6 GPa andc44531.9 GPa.
1670 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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for a parallelepiped sample as a function of the aspect ra
c/a. The volume of the sample is fixed,a3b3c
54.8 cm3, andb51.1a. Aspect ratios greater than one co
respond to rodlike samples and are characterized by the n
ber c/a in Fig. 2. Aspect ratios less than one correspond
platelike samples and are characterized by the number2a/c
in Fig. 2. A homogeneous, isotropic sample with elastic co
stants appropriate to basalt was assumed. As the aspect
is increased, the low-lying modes separate. For example
b51.1a, c/a54, we expect to be able to pick out 14 distin
resonances before mode overlap becomes a serious pro
for a RUS experiment.

Increasing the aspect ratio further might allow us to p
out even more distinct peaks. However, the RUS invers
code uses a fixed order polynomial to variationally
modes.8 As one side of a sample becomes disproportiona
large, a disproportionate number of nodes in the norm
modes will be in that direction, and the inversion code w
lose fitting accuracy in that direction. We have chosen
keep samples at 1/4<c/a<4 ~24 to 4 in Fig. 2!.

E. c 11 dependence

A rule of thumb1 is that five resonance frequencies a
needed to accurately determine each independent compo
of the elastic tensor. Thus for an isotropic material describ
by two independent components,c11 and c44, we need to
experimentally determine at least ten resonance frequen
Certainly the confidence with which the two independe
components of the elastic tensor can be determined is in
enced by the involvement of each component in the first
modes of the sample.

The dependence of moden on c11 or c44 is given by the
derivative of thenth model frequency with respect to th
modulus,

Din5
2cii

f n
M

] f n
M

]cii
, ~13!

wherei 51, or 4. The derivatives are normed such thatD1n

1D4n51. Sincec44'c11/2, i.e.,vs,vc , we expect low fre-
quency modes to be more highly dependent onc44 than on
c11 ~in analogy to the frequencies of the modes of a s
spring versus a stiff spring network!. Indeed, for a cube of
basalt, the first eight modes have an average dependenc
c11 of less than 15%. That is, most low-lying modes a
shear modes, involving very little compression. However,
geometry of the sample influences the dependence of a m
on c11. Platelike and rodlike samples will have low-lyin
bending or flexural modes that are compressional in natu

In Fig. 3, the mode dependence onc11, D1n , is shown
as a function of the ratio of the longest side to the shor
side of the sample,c/a, for the first ten modes of a paralle
epiped. The third side of the sample is held fixed with resp
to the shortest side,b51.1a. Positive aspect ratios denot
rodlike samples~the aspect ratioc/a on the right side!; nega-
tive aspect ratios denote platelike samples~the aspect ratio
2a/c on the left side!. A homogeneous, isotropic samp
with elastic tensor appropriate to basalt was used. As
aspect ratio is increased, sensitivity toc11 increases. For ex-

he
Ulrich et al.: Determinination of elastic moduli of rock
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ample, for a sample withc/a54, seven of the first ten mode
have ac11 dependence over 20%, as opposed to only t
modes forc/a51.

F. Anisotropy

If isotropic symmetry is broken in a single direction, th
sample has hexagonal symmetry and is called transver
isotropic. Many consolidated materials, such as sedimen
rock and laminar systems, are transversely isotropic.
elastic tensor of a system with hexagonal symmetry has
independent elements:c11, c33, c13, c44, andc66. Thus in
order to determine the elastic tensor for a system with h
agonal symmetry, we might expect to need 25 resona
frequencies. This is a prohibitively large number for lowQ
samples. Can we detect anisotropy with the lowest
modes? The following is a test of the sensitivity of RUS
anisotropy.

Consider a hexagonal elastic tensor

M5S c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

D , ~14!

where

c115~11e!C0 , ~15!

c1250.4~122e!C0 , ~16!

c1350.4~11e!C0 , ~17!

FIG. 3. c11 dependence as a function of aspect ratio. The sample is
constant volume of 4.8 cm3; b51.1a, and the aspect ratio isc/a on the right
side, 2a/c on the left side. The elastic constants arec11586.6 GPa and
c44531.9 GPa.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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c335~122e!C0 , ~18!

c4450.3~121.5e!C0 , ~19!

c6650.3~113e!C0 . ~20!

As e varies from 0 to 0.25, the elastic tensor varies fro
isotropic to hexagonal. Independent ofe, c111c221c33

53C0 ; c121c131c2351.2C0 ; and c441c551c6650.9C0 .
For e50.25 the elements of the elastic tensor have rela
values approximately that of zinc.9

Sensitivity to anisotropy is calculated as follows:~1!
Choose values ofc/a, and e. ~2! Calculate the lowest 10
resonance frequencies of the hexagonal system, using
elastic tensor in Eqs.~14!–~20!, and call these frequencie
the experimentally measured frequenciesf n

X . ~3! Fit these
frequenciesf n

X with an isotropic model, i.e., minimize Eq
~10! assuming that thef n

M depend only onc11 andc44.
In Fig. 4 the rms frequency error,

rms error5A 1

10 (
n51

10 S f n
X2 f n

M

f n
X D 2

, ~21!

is shown as a function ofe, for various aspect ratiosc/a, and
b/a51.1. In the figure, aspect ratios less than one are re
sented as negative reciprocals, e.g.,c/a51/4 is represented
as c/a524. For c/a54, the rms error is less than 1% fo
e,0.22. If we choose 1% error as the threshold betwee
good fit and a bad fit, we do not have enough informat
about the elastic properties of the system to recognize th
is anisotropic if we are given only the first ten modes. F
c/a52, the rms error rises fastest as the degree of anisotr
increases. This implies that thec/a52 aspect ratio provides
the best detection of anisotropy. However, the ability to
curately determine the elastic tensor for an anisotro
sample will still depend on having a data set with 20 or mo
resonance frequencies.

a

FIG. 4. Root-mean-square error for an isotropic fit to anisotropic sam
resonances. Anisotropy is characterized by the parametere. RUS fits are
performed forc/a524,22,1,2,3,4.
1671Ulrich et al.: Determinination of elastic moduli of rock
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III. RESULTS AND CONCLUSIONS

The previous section has provided a foundation for
investigation of real samples. RUS experiments and anal
were performed on five rock types. The sample set cons
of 13 parallelepipeds: 6 of Berkeley blue granite, 1 of pi
quartzite, 1 black gabbro, 2 of Sierra white granite, and 3
basalt. Multiple samples of the same rock type were cut fr
a single large specimen. Figure 5 shows the aspect ratios
volumes spanned by the sample set.

For each sample, an estimate of the expected isotr
elastic tensor was used to calculate the expected~model!
resonance frequencies for the sample. These model freq
cies were used to guide the experimental search for r
nances. RUS scans were performed for each sample to
the first ten experimental resonance frequencies. The firs
visible experimental resonant modes are not always the
ten modes as predicted by the model, i.e., some modes
missing in the experiment. Thus while the data analysis w
always performed with ten experimentally measured re
nance frequencies, the mode identities are not necessaril
same from sample to sample.

FIG. 5. Aspect ratio as a function of volume for the 13 samples stud
Samples are black gabbro~BG!, pink quartzite~PQ!, Berkeley blue granite
~BB!, Sierra white granite~SW!, and basalt~B!.
1672 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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Table I contains the RUS derived elements of the isot
pic elastic tensors of the 13 samples. The reported valueQ
is the average quality factor for the lowest ten measu
resonance frequencies,

Q5
1

10 (
n51

10 f n
X

D f n
X , ~22!

where D f n
X is the full-width at half-maximum of the reso

nance intensity centered atf n
X . The error in the right-most

column is given by Eq.~21!. The isotropic moduli derived
for each sample,c11 andc44 are also shown in Fig. 6.

Notice that for all black gabbro samples, the she
modulus (c44) is consistently 35–36 GPa, while the com
pressional modulus (c11) varies by 20%. As indicated in the
percentc11 column of the table, the compressional modul
varies because it is not heavily involved in the reson
modes used for the fits~Sec. II E!. The smallest aspect rati
black gabbro sample has the largest rms frequency erro
expected. However, there is no direct correlation betw
rms frequency error and aspect ratio. Too many other fac
play a role, such as volume and the presence of inhomo

.FIG. 6. c11 versusc44 for the 13 samples studied. Samples are black gab
~BG!, pink quartzite~PQ!, Berkeley blue granite~BB!, Sierra white granite
~SW!, and basalt~B!.
TABLE I. Sample set 1. Samples are black gabbro~BG!, pink quartzite~PQ!, Berkeley blue granite~BB!,
Sierra white granite~SW!, and basalt~B!. The samples are characterized by smallest sidea, aspect ratioc/a,
volume V, relative size of inhomogeneityj/a, quality factorQ, compressional modulusc11 , percentage of
compressional modulus involvement in the ten modes used for the fit, shear modulusc44 , and rms error in the
RUS fit to resonance frequencies.

Sample a ~cm! c/a V ~cm3! j/a Q c11 ~GPa! %c11 c44 ~GPa! % error

BG-1 2.8 1.4 34 0.23 350 101 14 35 1.23
BG-2 2.3 2.6 35 0.28 350 108 12 36 0.27
BG-3 1.0 4.0 4.4 0.32 350 121 14 36 0.48
BG-4 1.3 3.9 9.1 0.24 350 107 16 35 0.39
BG-5 1.6 3.9 17 0.31 350 117 10 36 0.71
BG-6 2.0 4.0 36 0.21 350 110 16 36 0.31
PQ 2.0 4.0 35 1.7 250 69 42 35 1.4
BB 2.0 4.0 35 0.20 230 32 26 13 13
SW-1 0.96 3.3 3.7 0.46 150 40 51 24 15
SW-2 1.7 4.0 23 0.17 140 38 54 19 0.61
B-1 2.1 1.4 16 0.29 275 88 13 31 0.69
B-2 2.8 2.0 46 0.04 255 84 14 32 0.47
B-3 1.7 3.9 23 0.06 335 87 20 32 0.31
Ulrich et al.: Determinination of elastic moduli of rock
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lel-
neity. An important factor in RUS experiments, that cann
be easily quantified, is user confidence. While the results
RUS fit may not provide direct evidence that a high asp
ratio sample gives better results than a low aspect r
sample, the picking of the resonance peaks~accomplished
primarily by hand and eye! is easier for high aspect ratios
since the peaks are more spread out~Fig. 2!.

If we require that the rms frequency error in the RUS fi
be less than 1%, the results from BG-1, BB, and SW-1 wo
be considered invalid. Notice that the elastic tensors deri
for the two Sierra white granite samples are within 20%
each other, even though the rms frequency errors are w
different. Again, the rms frequency error is not a reliable t
of the validity of results. Indeed, the commonly accep
values of the moduli of Berkeley blue granite arec11

530 GPa andc44513 GPa. Given inherent variability in
samples, and the low dependence of the measured reso
modes onc11, the results for Berkeley blue granite are r
markably good. The rms frequency error is not directly c
related with any of the variables we studied, i.e., aspect ra
volume,Q, or relative inhomogeneity. However, it is still
measure of how well our experimental RUS results can
modeled.

The modeling in Sec. II and the results shown in Tabl
indicate that RUS is a viable technique for characterizing
average elastic behavior of inhomogeneous materials.
though larger rms errors can be expected for inhomogene
materials than those acceptable for homogeneous sam
~less than 0.5%1!, our results are generally close for differe
samples of the same material, and consistent with acce
values.10 We have found that high aspect ratio samples
easier to work with than low aspect ratio samples, althou
our results indicate that this is primarily a user preferen
issue, rather than an accuracy issue. A hypothesis tha
mains untested is whether anisotropy is more likely to
detected with low aspect ratio samples than with high asp
ratio samples.

The future of RUS as a characterization tool for inh
mogeneous materials may be more connected to the sen
ity of resonant modes to changes in the elastic state
system, than to the ability of the RUS inversion technique
accurately predict the elastic tensor. Preliminary meas
ments of resonances of Berea sandstone as a functio
temperature, show that the elastic behavior of Berea sa
stone at low temperature~less than 200 K! is repeatably
hysteretic.11,12 These measurements also indicate that
elastic tensor is softening, rather than hardening, as the
perature is lowered. RUS may prove to be a useful techni
for probing changes in elastic state under extreme conditi
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APPENDIX: PERTURBATION THEORY FOR
NONIDEAL SAMPLE GEOMETRY

The elastic energy of a solid body, in steady state
frequencyv, is described by the Lagrangian

L5E dxf~x!S v2

2
r~x!ui

22
1

2
ci jkl ~x!

]ui

]xj

]uk

]xl
D , ~A1!

whereu is the displacement vector at positionx, ci jkl is the
elastic tensor,r the mass density, repeated indices a
summed over the Cartesian coordinates, andf describes the
extent or figure of the sample,

f~x!5H 1, x inside the sample

0, x outside the sample.
~A2!

Equation~A1! is quite general, allowing for:~1! an arbitrary
sample figuref(x); ~2! a nonuniform densityr(x); and~3!
a nonuniform elastic tensorci jkl (x).

The equation of motion for the normal modes is fou
by varying L with respect toui . If the traction on the sur-
faces defined byf(x) vanishes,ui satisfies a wave equatio
in the form

r~x!v2ui1
]

]xj
S ci jkl ~x!

]uk

]xl
D50 ~A3!

for x inside the sample. The condition that the traction on
surfaces vanish is enforced by holding the sample so that
effectively free standing.

The equation of motion forui , Eq. ~A3!, can be cast in
the form of a variational problem.11 That is, the quantity
v2@ui #, where

v2@ui #5
*dxf~x!ci jkl ~x!]ui /]xj ]uk /]xl

*dxf~x!r~x!ui
2 , ~A4!

must be stationary subject to arbitrary variations ofui con-
sistent with traction free boundaries. Using this form for t
normal mode frequencies it is possible to make a system
study of the consequences of change inf(x), r(x), and
ci jkl (x). Assume the ideal sample is a rectangular paral
epiped specified byf0 , has uniform densityr0 , and has
uniform elastic constantsci jkl

0 . Then variations in these
quantities are given bydf(x)5f(x)2f0 , dr(x)5r(x)
2r0 , anddci jkl (x)5ci jkl (x)2ci jkl

0 . To first order indf, dr,
anddc we have

v25
N0

D0
F11

dNc

N0
1

dNf

N0
2

dDr

D0
2

dDf

D0
G , ~A5!

where

N05ci jkl
0 E dxf0

]ui

]xj

]uk

]xl
. ~A6!

D05r0E dxf0ui
2, ~A7!

dNc5E dxf0dci jkl ~x!
]ui

]xj

]uk

]xl
, ~A8!

dNf5ci jkl
0 E dxdf~x!

]ui

]xj

]uk

]xl
, ~A9!
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dDp5E dxf0dr~x!ui
2, ~A10!

dDf5r0E dxdf~x!ui
2. ~A11!

Using the variational technique of Visscheret al., we
can find the eigenvaluesvn,0

2 5N0 /D0 and eigenfunctions
ui ,n

0 5cn(x) associated with the ideal sample. Thus the lo
est order contribution to the frequency shift due to a per
bation is

vn
22vn,0

2

vn,0
2 5

dNc

N0
1

dNf

N0
2

dDr

D0
2

dDf

N0
, ~A12!

where ui5cn(x). For the example of an inhomogeneo
mass density, we would have

vn
22vn,0

2

vn,0
2 52

*dxf0dr~x!ucnu2

r0*dxf0ucnu2 , ~A13!

where

vn,0
2 5

ci jkl
0 *dxf0]cn /]xj ]cn /]xl

r0*dxf0ucnu2 . ~A14!

Equation~A13! is used in Sec. II C for the case of a ma
defect to illustrate the consequences of a mass inhomog
ity on resonant mode frequencies of a two-dimensio
membrane.
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